Genetic Optimization of Fuzzy Rule-base System

نویسندگان

  • Mukesh Kumar
  • Ajay Jangra
  • Chander Diwaker
چکیده

A fuzzy rule-based system consists of fuzzy if-then rules such as “If x1 is small and x2 is small than y is large”. The problem with existing fuzzy rule-based systems is that the size of the rule-base (number of rules) increases exponentially with the increase of the number of fuzzy sets involved in the rules. This exponential increase in size of the rule-base increases the search time and hence the problem solving time, and also the memory space required. In this paper a fuzzy rule-base compaction using genetic algorithm is proposed. The proposed approach consists of three phases: Knowledge acquisition phase, Encoding phase, and Compaction phase or Optimization phase. In knowledge acquisition phase information from various knowledge sources i.e. experts and machine learning methods is integrated into a single knowledge base. In encoding phase rule set and corresponding membership functions from different knowledge sources is encoded into a variable length string or chromosomes so that they can contribute to the genetic optimization approach. In optimization phase genetic algorithm that results in an optimal or nearly optimal set of fuzzy rules and membership functions from the initial set of rules and membership function is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysing Price, Quality and Lead Time Decisions with the Hybrid Solution Method of Fuzzy Logic and Genetic Algorithm

In this paper, the problem of determining the quality level, lead time for order delivery and price of a product produced by a manufacturer is considered. In this problem the demand for the product is influenced by all three decision variables: price, lead time and quality level. To formulate the demand function, a fuzzy rule base that estimates the demand value based on the three decision vari...

متن کامل

Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm

This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...

متن کامل

Fact Gathering Using Ant Colony Optimization

Fact Gathering means generating rule base from available numerical data or data base. The intelligence of a fuzzy system lies in its rule base. Generating rule base is one of the most important and difficult tasks when designing fuzzy systems. Various rule base generation methods are used such as Neural networks, genetic algorithms, biogeography based optimization approach, ant colony optimizat...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Fuzzy Rule-based Controllers That Learn by Evolving Their Knowledge Base. ?

Fuzzy Logic Controllers may be considered as knowledge-based systems , incorporating human knowledge into their Knowledge Base through Fuzzy Rules and Fuzzy Membership Functions. The deenition of these Fuzzy Rules and Fuzzy Membership Functions is actually aaected by subjective decisions, having a great innuence over the performance of the Fuzzy Controller. In recent years, eeorts have been mad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010